Novel Fission-Product Separation Based on Room Temperature Ionic Liquids

Huimin Luo,¹ Sheng Dai,² Peter V. Bonnesen,² and A. C. Buchanan, III²

¹Nuclear Science & Technology Division and ²Chemical Sciences Division, Oak Ridge National Laboratory

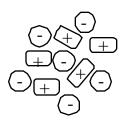
Robin D. Rogers,³ John D. Holbrey³ and Charles L. Hussey⁴

³University of Alabama and ⁴University of Mississippi

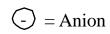
Research Objectives

The overall goal of this project is to develop a new ionic liquid based solvent extraction process for separation of Cs-137 and Sr-90 from tank wastes.

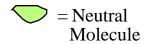
- To synthesize new ionic liquids tailored for the extractive separation of Cs⁺ and Sr²⁺.
- To select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids.
- To develop efficient processes to recycle ionic liquids and crown ethers via electrochemistry.
- To investigate chemical stabilities of ionic liquids under strong acid, strong base, and high level radiation conditions.

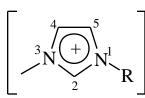

Why Ionic Liquids?

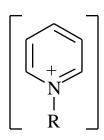
Ionic systems consisting of salts that are liquid at ambient temperatures can act as solvents for a broad spectrum of chemical species.


- Nonvolatility
- Ionicity
- Tunable Hydrophobicity
- Tunable Lewis Acidity
- Large Electrochemical windows
- Thermal Stability
- Nonflammability
- Wide Liquid-Phase Temperature. (-100°C to around 300°C)

Ionic Liquid

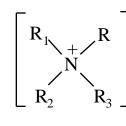

Organic Solvent


+ = Cation

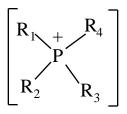


Range of Organic Cations and Anions Typically Used to Prepare Room-Temperature Ionic Liquids

Most commonly used cations:



1-alkyl-3-methyl-imidazolium



N-alkyl-pyridinium

 $[CF_3SO_3]$

Tetraalkylammonium

Tetraalkylphosphonium $(R_{1234} = alkyl)$

Some possible anions:

water-insoluble

 $[PF_6]$

 $[(CF_3SO_2)_2N]^{-1}$

 $[BR_1R_2R_3R_4]^{-1}$

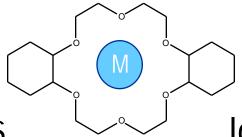
→ water-soluble

 $[BF_4]$ - $[CH_3CO_2]$ -

 $[CF_3CO_2]$ -, $[NO_3]$ -

Br-, Cl-, I-

[Al₂Cl₇]⁻, [AlCl₄]⁻ (decomp.)


Most commonly used alkyl chains:

ethyl octyl butyl decyl

hexyl

Comparison of Solvent Extractions Based on Molecular Solvents and Ionic Liquids

Molecular Solvents

Ionic Liquids (IL)

 $M^{n+}(aq) D M^{n+}(org)$ Unfavorable

n A⁻(aq) D n A⁻(org) Unfavorable

 $crown(org) + M^{n+}(org) D \{crown M^{n+}\}(org) Favorable$

 ${\operatorname{crown}\ M^{n+}}(\operatorname{org}) + \operatorname{n}\ A^{-}(\operatorname{org}) \ {\operatorname{D}}(\operatorname{crown}\ M^{n+}\ \operatorname{n}A^{-})(\operatorname{org})$

Overall Process: $crown(org) + M^{n+}(aq) + n A^{-}(aq)$ $D\{crown M^{n+} n A^{-}\}(org)$

Thermodynamically Unfavorable

 $M^{n+}(aq) D M^{n+}(IL)$ more favorable

 $n A^{-}(aq) D n A^{-}(IL)$ more favorable

 $crown(org) + M^{n+}(IL) D \{crown M^{n+}\}(IL) Favorable$

Mⁿ⁺(aq) + n Org⁺(IL) D Mⁿ⁺(IL) + n Org⁺(aq) lon Exchange – Dietz & Rogers

Overall Process: $crown(IL) + M^{n+}(aq) + n A^{-}(aq) + n Org^{+}(IL)$ $D \{crown M^{n+}\}(IL) + n A^{-}(IL) + n Org^{+}(aq)\}$

Thermodynamically favorable

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

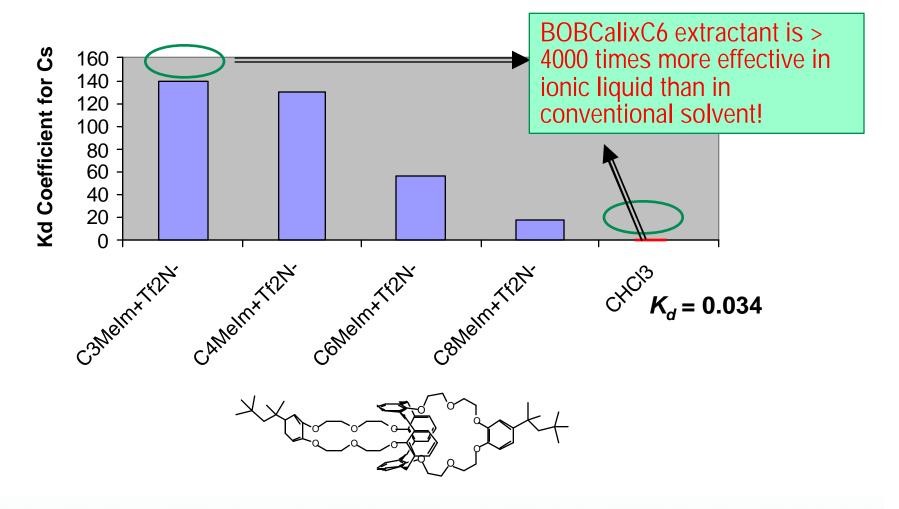
Summary of Completed Research

- Development of Highly Selective Extraction Process for Cs⁺ Based on Calixarenes
- Demonstration of Facilitated Sacrificial Ion-Exchange Extraction Processes to Reduce the Loss of ILs and to Increase Extractive Strength of ILs
- Development of Recyclable IL-Based Extraction Systems
- Optimization of Selectivities of Extractants via Systematic Change of ILs
- Development of an Electrochemical Method for Recycling the Ionic Liquid-ionophore Extractant Phase Following the Extraction of Cs^+ and Sr^{2+}
- Synthesis of New Ethylene-Glycol Functionalized Bis-Imidazolium Ionic Liquids and Sr²⁺/Cs⁺ Partitioning Studies

Anal. Chem. 2004, 76, 2773-2779. Anal. Chem. 2004, 76, 3078-3083.

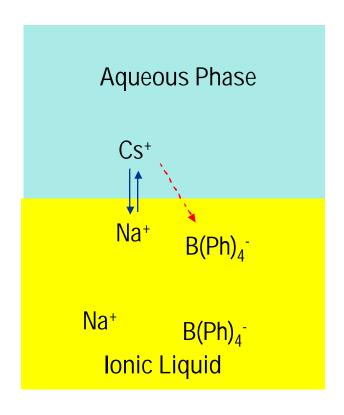
Comparison of Sr-Extraction Results Obtained Using Ionic Liquids and Conventional Solvents.

Extract Phase	K _d ^a With 0. 15 M crown ether ^a	K _d Without cr	own ether
BuMe ₂ ImPF ₆	4.2	0.67	
BuMeImPF ₆	2.4×10	0.89	
EtMe ₂ ImTf ₂ N	4.5×10^{3}	0.81	
EtMeImTf ₂ N (1.1×10^4	0.64	Messages:Key Role Played
PrMe ₂ ImTf ₂ N	1.8×10^{3}	0.47	By Crown Ether
PrMeImTf ₂ N	5.4 × 10 ³ 14,000 ★ Enhancement	0.35	• Ion-Exchange
$C_6H_5CH_3$	7.6×10^{-1}	nm ^a	Effect
CHCl ₃	7.7×10^{-1}	nm	


^a The crown ether used in this experiment is dicyclohexane-18-crown-6.

b nm : not measurable.

S. Dai, Y. H. Ju, and C. E. Barnes "Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids" J. Chem. Soc. Dalton Trans. 1999, 1201-1202.


S. Dai, Y. H. Ju, and H. Luo, "Separation of Fission Products Based on Ionic Liquids" in International George Papatheodorou Symposium, Patras Science Park, 1999, p254-262

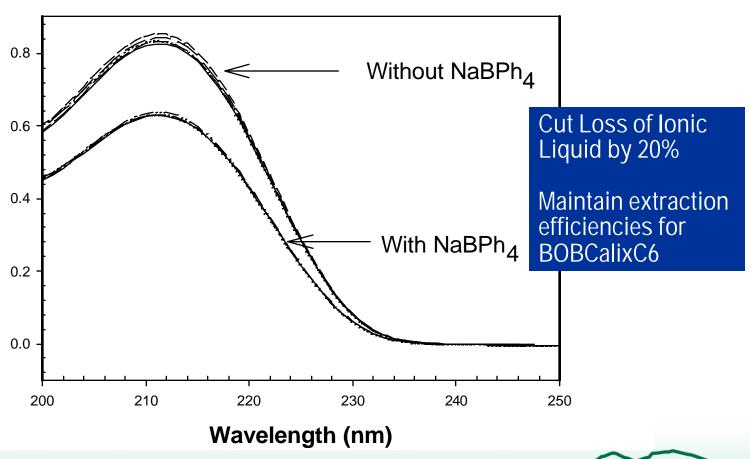
Very High Capture of Cesium Measured for Ionic Liquid-Based Solvents Containing BOBcalixC6

Separation Systems Based on Facilitated Ion-Exchange Recognition

Liquid Membranes Containing NaB(Ph)₄ or NaB(Ph- F_4)₄ in Ionic Liquids

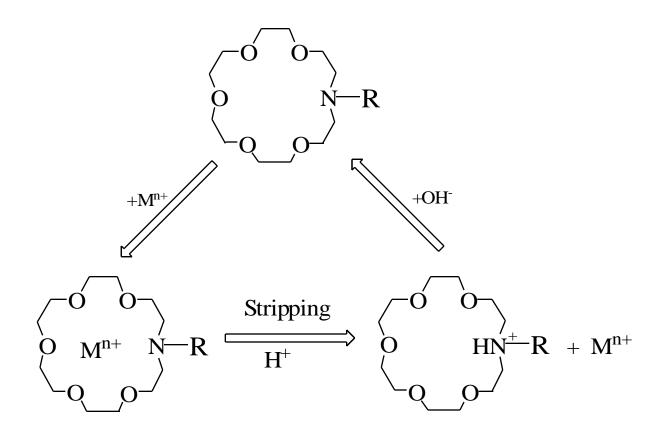
	K_d (Cs)	Initial CsCl Concentration
$7.69 \times 10^{-3} M$	0.21	88 ppm
$2.34 \times 10^3 \text{ M}$	0.32	320 ppm

	$\mathbf{K}_{\mathbf{d}}\left(\mathbf{C}\mathbf{s}\right)$	Initial CsCl Concentration
$1.85 \times 10^{-2} \mathrm{M}$	0.65	88 ppm
$5.87 \times 10^{-2} M$	0.71	88 ppm

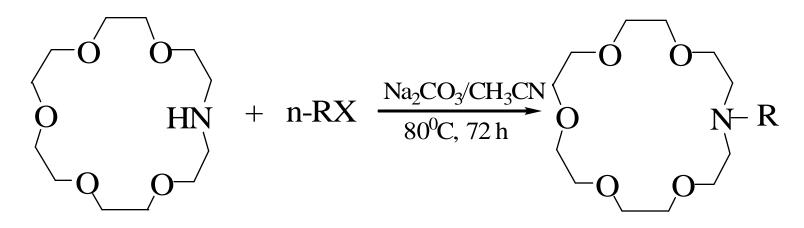

Facilitated Transport via Ion-Exchange Recognition

Na⁺ Sacrificial Ion Exchanger

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


UV-Visible Spectra of Ionic Liquids Lost to Aqueous Solutions During Extraction with and Without NaBPh₄

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


Development of Stripping Protocol to Recycle Macrocyclic Extractants

Luo, H.; Dai, S.; Bonnesen, P. V. Anal. Chem. 2004, in press

Synthesis of 1-Aza-18-crown-6 Derivatives

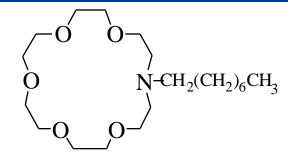
1.
$$R = ethyl$$
, $X = Br$

2.
$$R = n$$
-butyl, $X = Br$

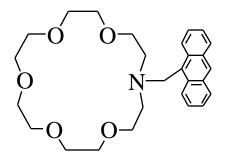
3.
$$R = n$$
-hexyl, $X = Br$

4.
$$R = n$$
-octyl, $X = Br$

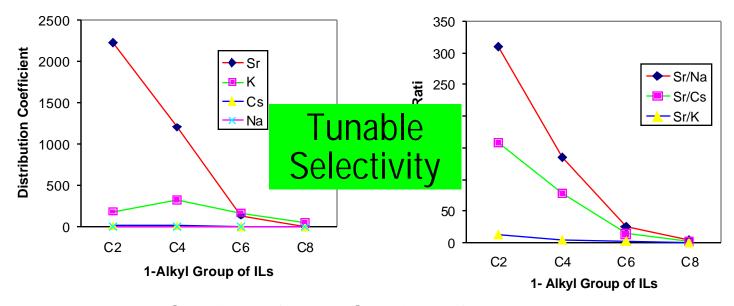
5.
$$R = n$$
-dodecyl, $X = Br$


6.
$$R = n$$
-hexadecyl, $X = Br$

7.
$$R = CF_3(CF_2)_5 CH_2 CH_2$$
-, $X = I$


8.
$$R = 9$$
-anthracenylmethyl, $X = Cl$

Recycling Experimental Results of Recyclable N-Alkylaza-18-crown-6 in [C₄mim][NTf₂]


 K_{dSr}^{2+} =918.64, 1 drop 6N HNO₃ gave 100% Sr^{2+} recovery K_{dCs}^{+} =23.96, 1 drop 6N HNO₃ gave 100% Cs^{+} recovery

 K_{dSr}^{2+} =3.77, 1 drop 6N HNO₃ gave 95% Sr²⁺ recovery K_{dCs}^{+} =14.9, 1 drop 6N HNO₃ gave 100% Cs⁺ recovery

Effect of 1-Akyl Group of ILs on Efficiency and Selectivity of Competitive Sr, K, Na, Cs Cation Extraction from Aqueous Solutions into ILs Containing 1-Octyl-aza-18-crown-6

- For C₂mim-Tf₂N & C₄mim-Tf₂N, the extraction efficiency is Sr²⁺>>K+> Cs+>Na+.
- In C₆mim-Tf₂N & C₈mim-Tf₂N, the order is K+> Sr²⁺> Cs+>Na+.

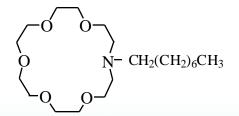
Comparison of Extraction Results of 1-Octyl-aza-18-crown-6 with DCH18C6

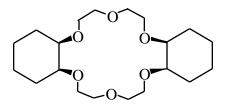
OAZ18C6	
Recyclable	

Non-commercial available

D_{Sr}: 8426 (in C₂) and 1072 (in C₄) D_{Cs}: 25.21 (in C₂) and 25.73 (in C₄)

Extraction Selectivity: Sr²⁺>K⁺>Cs⁺>Na⁺

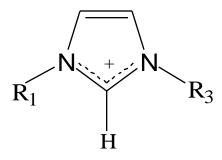



Non-recyclable

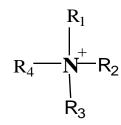
Commercial available

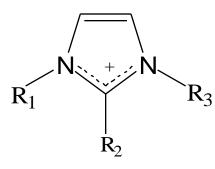
D_{Sr}: 10734 (in C₂) and 935 (in C₄) D_{Cs}: 589 (in C₂) and 380 (in C₄)

Extraction Selectivity: K⁺>Sr²⁺>Cs⁺>Na⁺

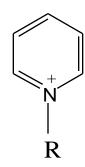


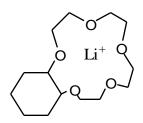
Future Research Plans


- 1. Synthesis and Optimization of ILs Tailored for Solvent Extraction of Fission Products
- 2. Synthesis and Study of Recyclable Crown Ethers
- 3. Optimization of Anions of ILs for Extraction of Fission Products
- 4. Sacrificial Ion-Exchange Method for Synergistic Extraction of Metal Ions and Reduction of ILs Loss
- 5. Development of an Electrochemical Method for the Non-Destructive Removal of Extracted Cs⁺ and Sr²⁺
- 6. Study of Stabilities of ILs in Harsh Chemical and Radiation Environments


Synthesis and Optimization of Ionic Liquids Tailored for Solvent Extraction of Fission Products

1,3-Dialkylimidazolium-Based


Quaternary Ammonium-Based


C(2)-Position Substituted Imidazolium-Based

Tetraalkyphosphonium-Based

Pyridinium-Based

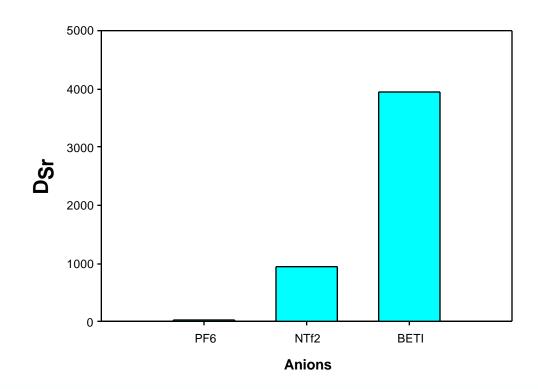
Metal Complexes-Based

Typical Synthesis of Ionic Liquids Based on Alkylpyridium and Quaternary Ammonium

$$R'R_{2}N \xrightarrow{R''I} R'R_{2}R''NI \xrightarrow{LiNTf_{2} \text{ or } LiBETI} \text{ or } R'R_{2}R''N^{+}NTf_{2}^{-}$$

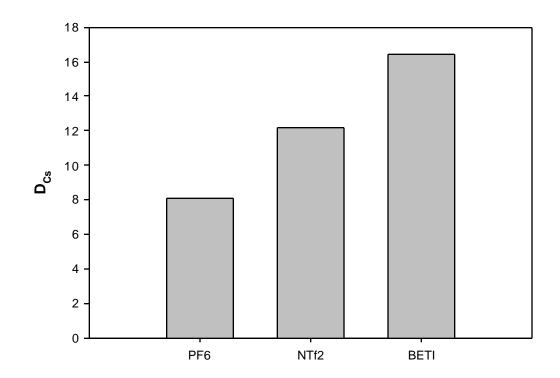
$$CH_{2}I \xrightarrow{LiNTf_{2} \text{ or } LiBETI} (CH_{2})_{2}RN^{+}NTf_{2}^{-}$$

RNH2
$$\xrightarrow{\text{CH}_3\text{I}}$$
 (CH₃)₃RNI $\xrightarrow{\text{LiNTf}_2 \text{ or LiBETI}}$ or $\xrightarrow{\text{(CH}_3)_3\text{RN}^+\text{NTf}_2^-}$ or $\xrightarrow{\text{(CH}_3)_3\text{RN}^+\text{BETI}^-}$

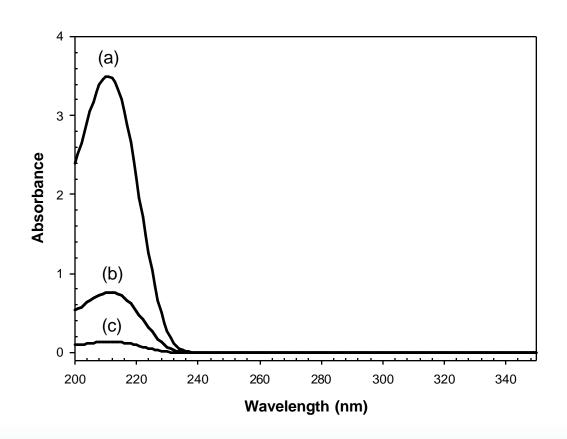


Synthesis of Task-Specific Ionic Liquids Containing an Aza crown Ether Fragment

Dependence of D_{Sr} on IL Anions of [C₄mim]-based ILs Containing DCH18C6.


- Ds_r value increases dramatically as the anion changed from PF₆ to NTf₂ to BETI. D_s, for BETI is more 200 times larger than that for PF₆.
- The increase of D_{Sr} with the hydrophobicity of the counter anions is in sharp contrast to the observation with the cation effect of ILs. In the latter case, D_{Sr} decreases with the hydrophocity of the IL cations.

Anion Effect on D_{Cs} of [C₄mim][X] Containing BOBCalixC6


 Dcs values increase slightly as the anion changed from PF6 to NTf2 to BETI.

Detection of Cation Leaching of (a) [C4mim][PF6], (b) [C4mim][NTf2], and (c) [C4mim][BETI] via UV-Vis Spectra of Equilibrium Aqueous Phases

The loss of the ILs was found to be strongly correlated to the conjugate anions. The more hydrophobic the anions are, the less are the losses of the ILs. The loss of C₄min-BETI is about 25 fold less than that of C₄min-PF₆.

Examples of Alkaline Metal Salts Can be Used to Produce a Variety of Ionic Liquids

Proton-Based Sacrificial Ion Exchangers

 $CH_3(CH_2)_7CH=CH(CH_2)_7COOH$

HF2C(CF2)₇CH₂OH

oleic acid

pKa: 4.8

CH₃(CH₂)₇OH

pKa: 20

$$-$$
CF $_3$

pKa: 12.5

pKa: 8.8

pKa: 12.5

Moyer, B. A., etc. Anal. Chem. 2003, 405

Effect of Carbon Chain Length of ILs and Synergistic Effect of Oleic Acid and Two Different Hydroxy Acids on Extraction Results of Rmim-Tf₂N Containing DCH18C6

			R in Rmim-Tf ₂ N			
Aq. Phase	Crown Ether	ILs containing Proton Exchanger	Ethyl, C2	Butyl, C4	Hexyl, C6	Octyl, C8
SrCl ₂	DCH18C6 0.02 M	NO	465.4	74.08	15.14	2.06
		Oleic acid(1)	466.3	136.7	16.64	2.22
		Fluoro-(2)	465.9	64.3	15.85	1.82
		Di-tertbutylphenol (3)	419.0	58.7	12.48	1.71

ACKNOWLEDGEMENT

The work is supported by US Department of Energy, EMSP program project 81929.

